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STABILITY OF STEADY-STATE SHEAR JET FLOWS OF AN IDEAL FLUID

WITH A FREE BOUNDARY IN AN AZIMUTHAL MAGNETIC FIELD

AGAINST SMALL LONG-WAVE PERTURBATIONS

UDC 532.522.2 + 537.84Yu. G. Gubarev

The problem of the linear stability of steady-state axisymmetric shear jet flows of a perfectly conduct-
ing inviscid incompressible fluid with a free surface in an azimuthal magnetic field is studied. The
necessary and sufficient condition for the stability of these flows against small axisymmetric long-
wave perturbations of special form is obtained by the direct Lyapunov method. It is shown that if this
stability condition is not satisfied, the steady-state flows considered are unstable to arbitrary small
axisymmetric long-wave perturbations. A priori exponential estimates are obtained for the growth of
small perturbations. Examples are given of the steady-state flows and small perturbations imposed
on them which evolve in time according to the estimates obtained.
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1. Formulation of Exact Problem. An infinitely long cylindrical jet of a perfectly conducting inviscid
incompressible fluid in unbounded space is studied. It is assumed that an azimuthal magnetic field is frozen in jet
material and a longitudinal constant electric current flows over the jet free surface, producing a quasi-steady-state
azimuthal magnetic field in the unbounded space enclosing the jet. In addition, it is assumed that the examined
magnetohydrodynamic jet flows of an ideal fluid are axisymmetric and the azimuthal component of the velocity
field is identically equal to zero. The surface tension on the free boundary of the conducting jet is ignored.

By virtue of these assumptions, the equations of one-fluid ideal magnetohydrodynamics [1] take the form
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(1.1)

where ρ ≡ const is the density field, v1 and v3 are the radial and axial components of the velocity field, H2 is the
azimuthal component of the magnetic field inside the jet, P is the pressure field, P∗ ≡ P + H2

2/(8π) is the modified
pressure field, t∗ is time, and r∗ and z∗ are cylindrical coordinates. It is assumed that the axis z∗ of the cylindrical
coordinate system coincides with the axis of the conducting jet.

Ignoring displacement current, the azimuthal component H∗
2 of the magnetic field outside the jet is given by

the formula

H∗
2 = 2J/r∗ (1.2)

(J ≡ const is the magnitude of the surface longitudinal constant electric current).
On the axis of the conducting jet and its free boundary, the following boundary conditions are specified:

v1 = 0, |H2/r∗| < +∞ (r∗ = 0),
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(1.3)
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The initial data for the first three relations of system (1.1) and the last boundary condition (1.3) are specified
as

v1(0, r∗, z∗) = v10(r∗, z∗), v3(0, r∗, z∗) = v30(r∗, z∗),

H2(0, r∗, z∗) = H20(r∗, z∗), r1(0, z∗) = r10(z∗),
(1.4)

and it is required that the functions v10, v30, H20, and r10 be consistent with the fourth equation of system (1.1)
and the first three relations in (1.3).

Next, in the mixed problem (1.1)–(1.4), we pass to the long-wave approximation preceded by a nondimen-
sionalizing procedure. The nondimensionalizing parameters are as follows: L is the characteristic spatial scale of
variation in the hydrodynamic and magnetic fields along the axis z∗, v0 is the characteristic velocity of the fluid,
and r0 is the characteristic radius of the jet. These parameters are used to introduce the nondimensional quantities
t, η, z, q, w, p∗, h, and æ, so that the following relations hold:

t∗ = tL/v0, r∗2 = ηL2δ2, z∗ = zL, 2v1r
∗ = qv0Lδ2,

v3 = wv0, P∗ = p∗ρv2
0 , H2 = hr∗

√
4πρv2

0 /(Lδ), H∗
2 r∗ = æ

√
4πρv2

0 Lδ.

Here δ = r0/L � 1 is the nondimensional characteristic radius of the conducting jet.
After nondimensionalizing using the above relations, system (1.1) is written as

δ2(qt + qqη − q2/(2η) + wqz)/2 + ηh2 = −2ηp∗η,

wt + qwη + wwz = −p∗z, ht + qhη + whz = 0, qη + wz = 0.
(1.5)

Using relation (1.2), boundary conditions (1.3) are brought to the form

q = 0, |h| < +∞ (η = 0),

p∗ = æ2/(2η1), q = η1t + wη1z (η = η1(t, z)),
(1.6)

where æ ≡ J/(r0

√
πρv2

0 ) = const.
The initial data (1.4) are written as

q(0, η, z) = q0(η, z), w(0, η, z) = w0(η, z), h(0, η, z) = h0(η, z), η1(0, z) = η10(z). (1.7)

If in the first of Eqs. (1.5) terms proportional to δ2 are omitted and if the expression for the function q(0, η, z)
is eliminated from relations (1.7), the initial-boundary-value problem (1.5)–(1.7) reduces to a form that corresponds
to the long-wave approximation. This representation of problem (1.5)–(1.7) cannot be considered final because it
can further be simplified by replacing the Eulerian independent variables t, z, and η by mixed Eulerian–Lagrangian
independent variables t′, z′, and ν [2]. By analogy with [3], this substitution is performed by the formulas

t = t′, z = z′, η = R(t′, z′, ν), ν ∈ [0, 1].

It is assumed that the function R satisfies the equation

q = Rt′ + wRz′ (1.8)

and the boundary conditions
R(t′, z′, 0) = 0, R(t′, z′, 1) = η1(t′, z′). (1.9)

The essence of this substitution of independent variables is that by means of the Lagrangian variable ν, it is
possible to enumerate the trajectories of fluid particle in the jet. In addition, from the definition of the function R

[see (1.8) and (1.9)] it follows that boundary conditions (1.6) are satisfied for the function q automatically. Finally
(and this is the main thing), according to the substitution of independent variables, the unknown free surface of
the conducting jet η = η1 becomes the well-known fixed boundary ν = 1.

Thus, in the new mixed Eulerian–Lagrangian independent variables (if we neglect terms with δ2), system
(1.5) becomes

Rνh2 = −2p∗ν , Rν(wt + wwz) = −Rνp∗z + Rzp∗ν ,

ht + whz = 0, qν + Rνwz −Rzwν = 0,
(1.10)
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where primes at the variables t′ and z′ are omitted for convenience. These equations are supplemented by the initial
conditions

w(0, z, ν) = w0(z, ν), h(0, z, ν) = h0(z, ν), R(0, z, ν) = R0(z, ν). (1.11)

Here from the requirement of one-to-oneness of the substitution of independent variables performed, the function
R0(z, ν) is considered a monotonically increasing function of the argument ν.

We write system (1.10) in a more illustrative form. For this, we integrate the first relation over the variable
ν in the limits from ν to 1, and then, using boundary conditions (1.6), we eliminate the modified dimensionless
pressure field p∗ from it and substitute it into the second equation of the same system of relations. As a result, we
obtain the equation
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2R2
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− (h2
1R1)z

2
+

(h2)zR

2
+

1
2

( 1∫
ν

R(h2)ν1 dν1

)
z
, (1.12)

where h1 and R1 are the values of the functions h and R, respectively, on the free surface of the jet ν = 1, and, by
virtue of the second boundary condition of system (1.9), R1(t, z) ≡ η1(t, z).

In the last equation of system (1.10), the function q is substituted by its corresponding expression (1.8), as
a result of which, this equation becomes

(Rν)t + (wRν)z = 0. (1.13)

Below it is assumed that the azimuthal component of the magnetic field inside the conducting jet is directly
proportional to the radial coordinate: h ≡ h1 = const [3]. This assumption, on the one hand, reduces the third
relation of system (1.10) to an identity; on the other hand, it leads to a marked simplification of Eq. (1.12), which
now can be written as

wt + wwz = [(æ/R1)2 − h2
1]R1z/2. (1.14)

The initial conditions for relations (1.13) and (1.14) are conditions (1.11) for the functions R and w:

R(0, z, ν) = R0(z, ν), w(0, z, ν) = w0(z, ν). (1.15)

It should be noted that equations similar to relations (1.13) and (1.14) can also be derived in the case where
R is considered a monotonically decreasing function of the argument ν. In this case, unlike in the case considered
above, the role of the free boundary of the jet is played by the straight line ν = 0 and the role of the symmetry axis
is played the straight line ν = 1.

The initial-boundary-value problem (1.13)–(1.15) has the energy integral

E1 ≡
1
2

+∞∫
−∞

( 1∫
0

w2Rν dν + æ2 lnR1 +
h2

1

2
R2

1

)
dz = const (1.16)

under the assumption that the solutions of this problem are periodic along the z axis or are localized on it (in the
last case, the fluid flow at infinity is homogeneous along the z coordinate).

It is easy to show that the mixed problem (1.13)–(1.15) has one more integral of motion. That is, differen-
tiating (1.14) over the independent variable ν, we obtain

wνt + (wwz)ν = 0. (1.17)

Next, from Eqs. (1.13) and (1.17) follows the important relation

Ct + wCz = 0 (1.18)

(C ≡ Rν/wν), which, combined with (1.17), shows that the functional

I ≡
+∞∫
−∞

1∫
0

wνF (C) dν dz (1.19)

is the desired additional integral of motion [3, 4]; F (C) is an arbitrary function.
The exact steady-state solutions of the initial-boundary-value problem (1.13)–(1.15) can be written as

w = w0(ν), R = R0(ν), R1 = R0
1 ≡ 1. (1.20)
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Here w0 and R0 are arbitrary and monotonically increasing functions of the independent variable ν; the steady-state
radius of the conducting jet is set equal to its characteristic radius r0. It is easy to verify that the functions w0,
R0, and R0

1 [see (1.20)] identically satisfy Eqs. (1.13) and (1.14).
The objective of the further study is to find conditions under which the steady-state flows (1.20) are stable

to small axisymmetric long-wave perturbations w′(t, z, ν), R′(t, z, ν), and R′
1(t, z).

2. Stability of Arbitrary Steady-State Axisymmetric Shear Jet Flows of an Ideal Fluid with
a Free Surface in an Azimuthal Magnetic Field. The mixed problem (1.13)–(1.15) and relations (1.17) and
(1.18) are linearized on the exact steady-state solutions (1.20). The linearization yields the initial-boundary-value
problem
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(2.1)
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on whose solutions the functional
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4

+∞∫
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R′2
1 dz = const. (2.2)

is conserved with time.
The first variation δJ1 of the integral J1 ≡ E1 +I = const [see (1.16) and (1.19)] vanishes on the steady-state

flows (1.20) if the functions w0, R0, and F reduces the equation

dF

dC
(C0) = −w02

2
to an identity and its second variation δ2J1, written in the corresponding notation, is similar in form to the
functional E.

The exact steady-state solutions (1.20) of the mixed problems (1.13)–(1.15) are stable to small axisymmetric
long-wave perturbations (2.1) if and only if the integral E in (2.2) is of fixed sign.

To determine whether the functional E possesses the property of having fixed sign, we write it as

E =

+∞∫
−∞

1∫
0

(Au,u) dν dz, u ≡ (w′, R′
ν , C ′, R′

1)
t, (2.3)

where A = ‖aik‖ is a 4× 4 square matrix with nonzero elements:

a11 =
1
2

dR0

dν
, a12 = a21 =

w0

2
, a24 = a42 =

h2
1 − æ2

8
, a33 =

1
2

dw0

dν

d2F

dC2
(C0).

According to the Silvester criterion [5], the integrand of the functional E in (2.3) is positive (negative)
definite if and only if the principal minors of the matrix A are positive [have a factor (−1)m, where m is the order
of one principal minor or another].

It is easy to show that the principal minors of the matrix A do not possess the required property of having
fixed sign. Thus, for the positive definiteness of the integrand of the functional E, the following inequalities should
hold:

dR0

dν
> 0, −w02 > 0.

It is obvious that the second inequality cannot hold in principle because the negative number is naturally less than
zero. At the same time, for the negative definiteness of this integrand, it is necessary that the following inequalities
be satisfied:
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dR0

dν
< 0, −w02 > 0.

The first inequality is not satisfied because the function R0 is monotonic, and the second inequality is not satisfied
because the quantity w02 is positive.

Thus, the functional E [see (2.3)] is neither positive nor negative definite. This, in turn, implies the absence
of sufficient conditions for the stability of the exact steady-solutions (1.20) of the initial-boundary-value problems
(1.13)–(1.15) against small axisymmetric long-wave perturbations w′(t, z, ν), R′(t, z, ν), and R′

1(t, z) [see (2.1)],
which are understood as the conditions for the sign-definiteness of the energy integral of motion E. Obviously,
a similar situation will be observed in the case of more general formulations of the problems of the stability of
steady-state shear jet magnetohydrodynamic flows with a free boundary.

3. Stability of Partial Steady-State Axisymmetric Shear Jet Flows of an Ideal Fluid with a
Free Surface in an Azimuthal Magnetic Field. Below, using the direct Lyapunov method [6, 7], we obtain
the necessary and sufficient condition for the stability of the subclass of steady-state flows (1.20)

d

dν
(w0C0) 6 0 (3.1)

against small axisymmetric long-wave perturbations (2.1) which do not change the value of the function C0(ν) for
each fluid particle and satisfy a number of constraints on the symmetry axis and free boundary of the examined jet.

To show that any exact steady-state solution (1.20), (3.1) of the mixed problem (1.13)–(1.15) is unstable to
small axisymmetric long-wave perturbations w′(t, z, ν), R′(t, z, ν), R′

1(t, z) [see (2.1)], it is necessary to find even one
of these perturbations that increases exponentially in time. To this end, a study is made of the axisymmetric shear
jet flows of a perfectly conducting inviscid incompressible fluid with a free surface in an azimuthal magnetic field
for which the small perturbations C ′(t, z, ν) [see (1.18) and (2.1)] are equal to zero. In other words, it is assumed
that for any fluid particle, the value of the function C0 [(see (1.20), (2.1), and (3.1)] does not change under the
perturbations, i.e., these perturbations are the deviations of the fluid-particle trajectories from the corresponding
streamlines of the steady-state flows (1.20) and (3.1).

From the physical point of view, the above requirement to small perturbations is justified by the fact that
the velocity circulation over any fluid contour in the axis plane specified at the initial time is conserved during
perturbation propagation because the value of the function C [see 1.18)] does not change in the fluid particles,
according to the initial-boundary-value problem (1.13)–(1.15). These perturbations can be introduced using the
Lagrangian displacement field ξ = ξ(t, z, ν) [8] defined by the equation

ξt = w′ − w0ξz. (3.2)

In view of relations (3.2), the mixed problem (2.1) can be written as

w′
t + w0w′

z =
1
2

(æ2 − h2
1)R

′
1z, R′

ν = −dR0

dν
ξz, w′

ν = −dw0

dν
ξz,

(3.3)

R′
ν = C0w′

ν , ξ(0, z, ν) = ξ0(z, ν), w′(0, z, ν) = w′
0(z, ν).

By direct calculations, the functional E in (2.2) is brought to the form

E =
1
2

+∞∫
−∞

[ 1∫
0

d

dν
(R0 − w0C0)w′2 dν +

h2
1 − æ2

2
R′2

1

]
dz (3.4)

and serves as the integral of motion for the initial-boundary-value problem (3.2), (3.3) if the following equalities
hold:

+∞∫
−∞

(w0C0w′2)
∣∣∣
ν=1

dz =

+∞∫
−∞

(w0C0w′2)
∣∣∣
ν=0

dz,

+∞∫
−∞

(w0C0w′)
∣∣∣
ν=1

R′
1z dz =

+∞∫
−∞

(w0C0w′)
∣∣∣
ν=0

R′
1z dz.

(3.5)

It is important to note that if one of conditions (3.5) is satisfied, the other conditions is also satisfied. In
addition, since the function w′(t, z, ν) [see (3.2) and (3.3)], as a function of the independent variable ν, has an
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arbitrariness on the symmetry axis ν = 0 of the conducting jet and its free surface ν = 1, these equalities can be
interpreted as the boundary conditions of the mixed problem (3.2), (3.3).

An analysis of the expression for the functional E in (3.4) shows that if the inequality

h2
1 > æ2 (3.6)

is valid, then, because the function R0 is monotonic and because the integral E does not depend on time, this
inequality implies the stability of the exact steady-state solutions (1.20) and (3.1) of the initial-boundary-value
problems (1.13)–(1.15) against small axisymmetric long-wave perturbations ξ(t, z, ν) [see (3.2), (3.3), and (3.5)].

Let inequality (3.6) be violated; i.e., let the following relation be valid:

h2
1 < æ2. (3.7)

Then, it is possible to show that the steady-state flows (1.20), (3.1) are unstable to the small axisymmetric long-wave
perturbations (3.2), (3.3), and (3.5).

Indeed, doubly differentiating the auxiliary functional

M ≡
+∞∫
−∞

1∫
0

dR0

dν
ξ2 dν dz (3.8)

over the independent variable t and using the constraints (3.2)–(3.5), we obtain the so-called virial equality [8–10]

d2M

dt2
= 4(T −Π), (3.9)

where

T ≡ 1
2

+∞∫
−∞

1∫
0

dR0

dν
w′2 dν dz, Π ≡ h2

1 − æ2

4

+∞∫
−∞

R′2
1 dz.

Multiplying equality (3.9) by a certain constant λ and taking into account the relation

E ≡ T + T1 + Π = const, (3.10)

where

T1 ≡ −
1
2

+∞∫
−∞

1∫
0

d

dν
(w0C0)w′2 dν dz > 0,

we obtain the basic equation

dEλ

dt
= 2λEλ − 4λTλ − 2λT1, (3.11)

where
Eλ ≡ Πλ + Tλ, 2Πλ ≡ 2(Π + T1) + λ2M,

2Tλ ≡ 2T − λ
dM

dt
+ λ2M =

+∞∫
−∞

1∫
0

dR0

dν
(w′ − λξ)2 dν dz > 0.

Because the quantities T1 [see (3.10)] and Tλ are nonnegative, from relation (3.11) for λ > 0 we obtain the
differential inequality

dEλ

dt
6 2λEλ,

whose integration yields the important estimate

Eλ(t) 6 Eλ(0) exp (2λt). (3.12)

Relation (3.12) is true for any solutions of the mixed problem (3.2), (3.3), (3.5) and for arbitrary positive
values of λ. In addition, in finding this inequality, we did not impose any restrictions on the sign of the functional Π
in (3.9).

From relation (3.12) it follows that the integral Eλ, generally speaking, varies monotonically in time. This
allows us to treat this functional as Lyapunov’s functional [6, 7, 9, 10].
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Next, using inequality (3.12), we shall construct two-sided exponential estimates for the growth of small
axisymmetric long-wave perturbations ξ(t, z, ν) [see (3.2), (3.3), and (3.5)] and among the latter we shall choose
and describe the most rapidly growing small perturbations.

Using relation (3.7) and choosing appropriate initial Lagrangian displacement fields ξ0(z, ν) and velocity
field perturbations w′

0(z, ν) [see (3.3)], it is easy to ensure the validity of the inequalities Π(0) < 0 and T (0)+T1(0)
< |Π(0)|. As a result, the integral Eλ(0), as follows from (3.11), is a second-order polynomial of the parameter λ

with a positive coefficient M(0) [see (3.8)] at λ2 and a negative free term E(0) [see (3.4)]:

Eλ(0) = E(0)− λ

2
dM

dt
(0) + λ2M(0). (3.13)

If the values of λ are taken from the interval

0 < λ < Λ ≡ A1 +
√

A2, (3.14)

where
A1 ≡ [4M(0)]−1 dM

dt
(0), A2 ≡ A2

1 −
E(0)
M(0)

,

then from relation (3.13) follows the estimate Eλ(0) < 0. This estimate and inequality (3.12) indicate that the
small axisymmetric long-wave perturbations (3.2), (3.3), and (3.5) grow exponentially in time.

Provided that λ ≡ Λ− δ1 (with any parameter δ1 from the interval ] 0,Λ [ ), relation (3.12) can be written as

EΛ−δ1(t) 6 EΛ−δ1(0) exp [2(Λ− δ1)t] [EΛ−δ1(0) < 0]. (3.15)

Since, by virtue of the representation (3.11), the inequality Eλ(t) > Π(t) is satisfied, relation (3.15) can be written
as

−Π(t) > |EΛ−δ1(0)| exp [2(Λ− δ1)t]

or, finally,

(æ2 − h2
1)

+∞∫
−∞

R′2
1 dz > 4|EΛ−δ1(0)| exp [2(Λ− δ1)t]. (3.16)

From inequality (3.16) it follows that the quantity Λ − δ1 [see (3.14) and (3.15)] is the lower bound of the
increments of the small axisymmetric long-wave perturbations ξ(t, z, ν) [see (3.2), (3.3), and (3.5)].

Estimate (3.16) can be considerably improved if the initial Lagrangian displacement field ξ0(z, ν) and the
velocity field perturbation w′

0(z, ν) [see (3.3)] are additionally subjected to the requirement

w′
0(z, ν) = λξ0(z, ν). (3.17)

Indeed, from relations (3.11) and (3.13) it follows that Tλ(0) = 0 and Eλ(0) = Πλ(0). In turn, these equalities
show that on the interval

0 < λ < Λ1 ≡
√
−2Π(0)/M(0) (3.18)

the estimate Πλ(0) < 0 is valid. From this it follows that setting λ ≡ Λ1 − δ2 (with an arbitrary parameter δ2 from
the interval ] 0,Λ1[ ), it is possible to bring inequality (3.12) to the form

EΛ1−δ2(t) 6 ΠΛ1−δ2(0) exp [2(Λ1 − δ2)t] [ΠΛ1−δ2(0) < 0]. (3.19)

After calculations similar to those performed above in justifying estimate (3.16), inequality (3.19) becomes

−Π(t) > |ΠΛ1−δ2(0)| exp [2(Λ1 − δ2)t]

or, finally,

(æ2 − h2
1)

+∞∫
−∞

R′2
1 dz > 4|ΠΛ1−δ2(0)| exp [2(Λ1 − δ2)t]. (3.20)

According to relation (3.20), the quantity Λ1−δ2 [see (3.18) and (3.19)] is the lower bound of the increments
of the small axisymmetric long-wave perturbations (3.2), (3.3), (3.5), and (3.17).

From a comparison of inequalities (3.16) and (3.20), it follows that the small axisymmetric long-wave per-
turbations ξ(t, z, ν) [see (3.2), (3.3), and (3.5)] whose initial data satisfy constraint (3.17) grow faster than the
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remaining perturbations of the examined subclass, and among them, the most rapidly growing perturbations are
those whose increments, as shown below, are calculated by the formula

Λ+
1 ≡ sup

ξ0(z,ν)

Λ1. (3.21)

Indeed, let λ > Λ+
1 . In this case, for all possible initial Lagrangian displacement fields ξ0(z, ν) [see (3.3)],

the relation Πλ(0) > 0 is valid. Hence, the integral Eλ(0) [see (3.11) and (3.13)] is also positive definite for all
admissible initial Lagrangian displacement fields ξ0(z, ν) and velocity field perturbations w′

0(z, ν) [see(3.3)].
For λ ≡ Λ+

1 + δ3 (δ3 > 0 is a parameter) from inequality (3.12) follows the estimate

EΛ+
1 +δ3

(t) 6 EΛ+
1 +δ3

(0) exp [2(Λ+
1 + δ3)t]. (3.22)

By virtue of (3.22), the quantity Λ+
1 + δ3 is the upper bound of the increments of the small axisymmetric long-wave

perturbations (3.2), (3.3), and (3.5).
A comparison of inequalities (3.20) and (3.22) leads to the conclusion that the quantity Λ+

1 [see (3.18) and
(3.21)] is both the upper and lower bound of the growth rate ω of the small perturbations (3.2), (3.3), and (3.5):

Λ+
1 − δ2 6 ω 6 Λ+

1 + δ3. (3.23)

Relation (3.23) shows that the higher growth rate is observed for small axisymmetric long-wave perturbations
ξ(t, z, ν) [see (3.2), (3.3), and (3.5)] whose increment is close in magnitude to Λ+

1 .
Thus, if condition (3.7) is valid, then determining, with the use of relations (3.18) and (3.21), the value of

Λ+
1 , which estimates the growth rate ω [see (3.23)] for the most rapidly growing small perturbations (3.2), (3.3),

(3.5), and (3.17), it is possible to find the characteristic times during which the small axisymmetric long-wave
perturbations (3.2), (3.3), and (3.5) cause failure of the steady-state axisymmetric shear jet flows (1.20) and (3.1)
of a perfectly conducting inviscid incompressible fluid with a free surface in an azimuthal magnetic field.

Next, we construct an example of the steady-state flows (1.20), (3.1) and the initial small axisymmetric
long-wave perturbations (3.2), (3.3), (3.5) imposed on them, which, generally speaking, evolve with time according
to estimates (3.16) and (3.22). A study is made of the steady-state axisymmetric shear jet magnetohydrodynamic
flows

w0(ν) = C1 exp (−C2ν), R0(ν) = ν, R0
1 = 1 (3.24)

(C1 and C2 are positive constants) of an ideal fluid in the infinite strip[
(z, ν): −∞ < z < +∞, 0 6 ν 6 1

]
. (3.25)

It is easy to show that these flows are typical representatives of the particular class (3.1) of the steady-state flows
(1.20).

If inequality (3.7) is satisfied, the steady-state flows (3.24) and (3.25) are unstable, for example, to small
axisymmetric long-wave perturbations ξ(t, z, ν) [see (3.2), (3.3), and (3.5)] for which the initial Lagrangian displace-
ment field ξ0(z, ν) is specified as

ξ0(z, ν) = (2ν − 1) exp (C2ν) sin (2πz/l), (3.26)

where l is an arbitrary positive constant. From the physical point of view, these perturbations are periodic (with a
wavelength l) fluctuations of the free boundary of the jet and the axial velocity of the fluid flowing inside the jet.

Indeed, using the definition of the function R1(t, z) [see (1.9) and (1.12)] and Eq. (3.3), it is easy to obtain
the relations

R′
0ν(z, ν) = −(2π/l)(2ν − 1) exp (C2ν) cos (2πz/l),

R′
1(0, z) ≡

1∫
0

R′
0ν(z, ν) dν = − 2π

lC2

[(
1− 2

C2

)
exp (C2) +

2
C2

+ 1
]
cos

2πz

l
,

w′
0ν(z, ν) = (2πC1C2/l)(2ν − 1) cos (2πz/l), w′

0(z, ν) =

ν∫
0

w′
0ν1

(z, ν1) dν1 =
2πC1C2

l
(ν2 − ν) cos

2πz

l
.

It should be noted that since here

w′
0(z, 0) = 0, w′

0(z, 1) = 0, (3.27)
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boundary conditions (3.5) are identically satisfied, and, hence, at t = 0, they are matched to initial conditions (3.3)
and (3.27).

Taking into account the periodicity of the field ξ0(z, ν) [see (3.26)] over the independent variable z and
expressions (3.9) and (3.10) for the functionals T , T1, and Π, it is possible to calculate the values of the latter at
the initial time:

T (0) ≡ 1
2

l∫
0

1∫
0

dR0

dν
w′2

0 (z, ν) dν dz =
π2C2

1C2
2

30l
, T1(0) ≡ −1

2

l∫
0

1∫
0

d

dν
(w0C0)w′2

0 (z, ν) dν dz = 0,

Π(0) ≡ h2
1 − æ2

4

l∫
0

R′2
1 (0, z) dz =

π2(h2
1 − æ2)

2lC2
2

[(
1− 2

C2

)
exp (C2) +

2
C2

+ 1
]2

.

From this it follows that the inequality Π(0) < 0 is true and the inequality T (0) + T1(0) < |Π(0)| will be
valid if the constants C1 and C2 are chosen properly, for example: 0 < C1 < (3− e)

√
15(æ2 − h2

1), and C2 = 1.
As a result, for the steady-state flows (3.24) and (3.25), we obtain the explicit forms of the lower bound (3.16)

and the upper bound (3.22) (the second bound contains the parameter Λ1 instead of Λ+
1 ), which characterize the

growth of the small axisymmetric long-wave perturbations (3.2), (3.3), (3.5), and (3.26), and, hence the instability
of these flows. It should be noted that the growth rate ω in (3.23) for the small perturbations (3.2), (3.3), (3.5),
and (3.26) is evaluated both from below and from above by the quantity Λ1 (3.18) rather than Λ+

1 (3.21).
Finally, the most rapidly growing small axisymmetric long-wave perturbations of the steady-state flows

(3.24) and (3.25) are those for which the initial Lagrangian displacement field has the form ξ0(z, ν) = f(w0 − λz)
by virtue of Eqs. (3.3) and equality (3.17). In this case, the function f should be either periodic or localized on
the z coordinate. Then, the nature of the growth of these perturbations can be judged from the lower bound (3.20)
and the upper bound (3.22), and their growth rate ω [see (3.23)] can be found using the quantity Λ+

1 [see (3.18)
and (3.21)].

4. Instability of Arbitrary Steady-Sate Axisymmetric Shear Jet Flows of an Ideal Fluid with
a Free Surface in an Azimuthal Magnetic Field. Below, using the direct Lyapunov method, we show that
inequality (3.7) is a sufficient condition for the instability of the exact steady-state solutions (1.20) of the initial-
boundary-value problem (1.13)–(1.15) against small axisymmetric long-wave perturbations w′(t, z, ν), R′(t, z, ν),
and R′

1(t, z) [see (2.1)], and the perturbation growing exponentially in time is sought among the representatives of
the subclass (3.2), (3.3) of these perturbations. This implies that the steady-state flows (1.20) are further considered
free from constraint (3.1), and the small perturbations (3.2), (3.3) are considered free from constraint (3.5).

According to the above assumptions, the integral E in (2.2), which, naturally, is conserved not only on the
solutions of the mixed problem (2.1) but also on the solutions of the initial-boundary-value problem (3.2), (3.3),
has the form (3.10) with the only exception that T1 now denotes the functional

T1 ≡
+∞∫
−∞

1∫
0

w0w′R′
ν dν dz (4.1)

[it is important that the integral T1 in the form (4.1) is no longer of fixed sign]. The virial equality (3.9) and the
basic equation (3.11) also remain valid in this case.

In view of the aforesaid and under the assumption that condition (3.7) is valid, relation (3.11) leads to the
differential inequality

d2M

dt2
− 2λ

dM

dt
+ 2λ2M > 0 (4.2)

(λ is a certain positive constant). Integration of this inequality, in turn, results in the following lower bound:

M(t) > (C3 cos λt + C4 sinλt) exp (λt) (4.3)

(C3 and C4 are known constants).
Because the functional M [see (3.8)] is nonnegative by the definition and because the right side of inequality

(4.3) contains trigonometric functions bounded in absolute value, relation (4.3) can be brought, without loss of
generality, to the form

M(t) > C5 exp (λt) (4.4)
(C5 is a known positive constant).
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Relation (4.4) shows that the small axisymmetric long-wave perturbations ξ(t, z, ν) [see (3.2) and (3.3)] of
the exact steady-state solutions (1.20) of the mixed problem (1.13)–(1.15) grow exponentially with time. It should
be noted that the parameter λ in inequality (4.4) is not subjected to any additional constraints. In this sense,
the detected instability can be interpreted as a peculiar “breakthrough” of small-scale perturbations (which were
previously eliminated from consideration by passage to the long-wave approximation) to the region of large-scale
fluid flows.

Next, we construct an example of the steady-state flows (1.20) and the small axisymmetric long-wave per-
turbations imposed on them (3.2), (3.3), which develop in time according to the lower bound (4.4) if relation (3.7)
is satisfied.

A study is made of the steady-state axisymmetric shear jet magnetohydrodynamic flows of an ideal fluid

w0(ν) = a− ν, R0(ν) = ν, R0
1 = 1 (4.5)

(a > 1 is a constant) in the infinite strip (3.25). Obviously, these flows belong to the class of steady-state flows (1.20).
If inequality (3.7) is true, the steady-state flows (4.5), (3.25) are unstable to small axisymmetric long-wave

perturbations ξ(t, z, ν) [see (3.2), (3.3)] of the form

ξ(t, z, ν) = α exp (σβt)
[
(σ2 − (1/2− ν)2)(cos γβt cos βz − sin γβt sinβz)

+ 2σ(1/2− ν)(cos γβt sinβz + sin γβt cos βz)
]
/[σ2 + (1/2− ν)2]2. (4.6)

Here α is an arbitrary constant and β is a positive constant, whereas σ ≡
√

(æ2 − h2
1)/2− 1/4, γ ≡ 1/2− a.

Direct verification shows that the function ξ(t, z, ν) in (4.6) is a solution of the initial-boundary-value problem
(3.2), (3.3) and satisfies relations (3.9) and (3.10) [with the integral T1 in the form (4.1)] and (4.4). In addition, it
can be used as a Hadamard example [11] because a certain initial arbitrariness is admitted in the choice of β in
the exponent on the right of expression (4.6).

In view of the universality of the differential inequality (4.2), it may be effectively applied to a consideration
of a wide range of problems of hydrodynamic stability.

The author thanks A. M. Blokhin and B. A. Lugovtsov for their attention to this work.
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